GEOMETRIC QUADRATIC CHABAUTY

Author:

Edixhoven BasORCID,Lido Guido

Abstract

Abstract Since Faltings proved Mordell’s conjecture in [16] in 1983, we have known that the sets of rational points on curves of genus at least $2$ are finite. Determining these sets in individual cases is still an unsolved problem. Chabauty’s method (1941) [10] is to intersect, for a prime number p, in the p-adic Lie group of p-adic points of the Jacobian, the closure of the Mordell–Weil group with the p-adic points of the curve. Under the condition that the Mordell–Weil rank is less than the genus, Chabauty’s method, in combination with other methods such as the Mordell–Weil sieve, has been applied successfully to determine all rational points in many cases. Minhyong Kim’s nonabelian Chabauty programme aims to remove the condition on the rank. The simplest case, called quadratic Chabauty, was developed by Balakrishnan, Besser, Dogra, Müller, Tuitman and Vonk, and applied in a tour de force to the so-called cursed curve (rank and genus both $3$ ). This article aims to make the quadratic Chabauty method small and geometric again, by describing it in terms of only ‘simple algebraic geometry’ (line bundles over the Jacobian and models over the integers).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference32 articles.

1. 31 Stoll, M. , ‘Finite coverings and rational points’, Oberwolfach lecture, 2005, http://www.mathe2.uni-bayreuth.de/stoll/workshop2005/oberwolfach2005.pdf.

2. 25 Moret-Bailly, L. , Métriques permises, in Seminar on Arithmetic Bundles: The Mordell Conjecture (Paris, 1983/84), Astérisque, 127, pp. 29–87 (Soc.\ Math.\ France, Paris, 1985), http://www.numdam.org/article/AST_1985__127__29_0.pdf.

3. 8 Betts, A. , ‘The motivic anabelian geometry of local heights on abelian varieties’, Preprint, (2017), https://arxiv.org/abs/1706.04850.

4. 14 Dogra, N. , ‘Unlikely intersections and the Chabauty-Kim method over number fields’, Preprint, 2019, https://arxiv.org/abs/1903.05032.

5. $p$-adic Heights on Curves

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rational points on X0+(125);Expositiones Mathematicae;2023-09

2. Linear and Quadratic Chabauty for Affine Hyperbolic Curves;International Mathematics Research Notices;2023-08-15

3. Quadratic Chabauty for modular curves: algorithms and examples;Compositio Mathematica;2023-05-15

4. Geometric quadratic Chabauty over number fields;Transactions of the American Mathematical Society;2023-01-18

5. Quadratic Chabauty for Atkin–Lehner quotients of modular curves of prime level and genus 4, 5, 6;Acta Arithmetica;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3