Abstract
Abstract
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.
Funder
Department of Atomic Energy, Government of India
Publisher
Cambridge University Press (CUP)
Reference52 articles.
1. Differentialformen zu Untergruppen der Siegelschen Modulgruppe zweiten Grades;Weissauer;J. Reine Angew. Math.,1988
2. Propriétés de Lefschetz automorphes pour les groupes unitaires et orthogonaux;Bergeron;Mém. Soc. Math. Fr. (N.S.),2006
3. Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen
4. [11] Bergeron, N. and Clozel, L. , Spectre automorphe des variétés hyperboliques et applications topologiques Astérisque 303 (2005).