RATIONALITY OVER NONCLOSED FIELDS OF FANO THREEFOLDS WITH HIGHER GEOMETRIC PICARD RANK

Author:

Kuznetsov Alexander,Prokhorov YuriORCID

Abstract

Abstract We prove rationality criteria over nonclosed fields of characteristic $0$ for five out of six types of geometrically rational Fano threefolds of Picard number $1$ and geometric Picard number bigger than $1$ . For the last type of such threefolds, we provide a unirationality criterion and construct examples of unirational but not stably rational varieties of this type.

Funder

HSE University Basic Research Program

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference23 articles.

1. The Clemens–Griffiths method over non-closed fields

2. UNIRATIONALITY OF CUBIC HYPERSURFACES

3. La descente sur les variétés rationnelles, II

4. [14] Kuznetsov, A. , Derived categories of families of Fanothreefolds, 2022, arXiv e-print, 2202.12345.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rationality of Fano threefolds over non-closed fields;American Journal of Mathematics;2023-04

2. On higher-dimensional del Pezzo varieties;Известия Российской академии наук. Серия математическая;2023

3. On higher-dimensional del Pezzo varieties;Izvestiya: Mathematics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3