Author:
Abe Noriyuki,Kaneda Masaharu
Abstract
Let $G$ be a reductive algebraic group over an algebraically closed field of positive characteristic, $G_{1}$ the Frobenius kernel of $G$, and $T$ a maximal torus of $G$. We show that the parabolically induced $G_{1}T$-Verma modules of singular highest weights are all rigid, determine their Loewy length, and describe their Loewy structure using the periodic Kazhdan–Lusztig $P$- and $Q$-polynomials. We assume that the characteristic of the field is sufficiently large that, in particular, Lusztig’s conjecture for the irreducible $G_{1}T$-characters holds.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献