Abstract
Standard results from non-abelian cohomology theory specialize to a theory of torsors and stacks for cosimplicial groupoids. The space of global sections of the stack completion of a cosimplicial groupoid $G$ is weakly equivalent to the Bousfield–Kan total complex of $BG$ for all cosimplicial groupoids $G$. The $k$-invariants for the Postnikov tower of a cosimplicial space $X$ are naturally elements of stack cohomology for the stack associated to the fundamental groupoid ${\it\pi}(X)$ of $X$. Cocycle-theoretic ideas and techniques are used throughout the paper.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Diffeological principal bundles and principal infinity bundles;Journal of Homotopy and Related Structures;2024-04-15
2. Galois descent criteria;Homotopy Theory: Tools and
Applications;2019