Abstract
Abstract
We study the metric projection onto the closed convex cone in a real Hilbert space
$\mathscr {H}$
generated by a sequence
$\mathcal {V} = \{v_n\}_{n=0}^\infty $
. The first main result of this article provides a sufficient condition under which the closed convex cone generated by
$\mathcal {V}$
coincides with the following set:
$$ \begin{align*} \mathcal{C}[[\mathcal{V}]]: = \bigg\{\sum_{n=0}^\infty a_n v_n\Big|a_n\geq 0,\text{ the series }\sum_{n=0}^\infty a_n v_n\text{ converges in } \mathscr{H}\bigg\}. \end{align*} $$
Then, by adapting classical results on general convex cones, we give a useful description of the metric projection onto
$\mathcal {C}[[\mathcal {V}]]$
. As an application, we obtain the best approximations of many concrete functions in
$L^2([-1,1])$
by polynomials with nonnegative coefficients.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献