ON A CERTAIN LOCAL IDENTITY FOR LAPID–MAO'S CONJECTURE AND FORMAL DEGREE CONJECTURE : EVEN UNITARY GROUP CASE

Author:

Morimoto KazukiORCID

Abstract

Abstract Lapid and Mao formulated a conjecture on an explicit formula of Whittaker–Fourier coefficients of automorphic forms on quasi-split reductive groups and metaplectic groups as an analogue of the Ichino–Ikeda conjecture. They also showed that this conjecture is reduced to a certain local identity in the case of unitary groups. In this article, we study the even unitary-group case. Indeed, we prove this local identity over p-adic fields. Further, we prove an equivalence between this local identity and a refined formal degree conjecture over any local field of characteristic zero. As a consequence, we prove a refined formal degree conjecture over p-adic fields and get an explicit formula of Whittaker–Fourier coefficients under certain assumptions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference54 articles.

1. [24] Kaletha, T. , Minguez, A. , Shin, S.W. and White, P.-J. , ‘Endoscopic classification of representations: inner forms of unitary groups’, Preprint, 2014, arXiv:1409.3731.

2. Distinguished Generic Representations of GL(n) over p-adic Fields

3. Caract�risation de la correspondance de Langlands locale par les facteurs? de paires

4. Correction to “Formal degrees and adjoint 𝛾-factors”

5. Root Numbers of Asai L-Functions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3