THE DYNAMICAL MORDELL–LANG CONJECTURE FOR ENDOMORPHISMS OF SEMIABELIAN VARIETIES DEFINED OVER FIELDS OF POSITIVE CHARACTERISTIC

Author:

Corvaja PietroORCID,Ghioca DragosORCID,Scanlon ThomasORCID,Zannier UmbertoORCID

Abstract

AbstractLet $K$ be an algebraically closed field of prime characteristic $p$, let $X$ be a semiabelian variety defined over a finite subfield of $K$, let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$, let $V\subset X$ be a subvariety defined over $K$, and let $\unicode[STIX]{x1D6FC}\in X(K)$. The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$-sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$, some rational numbers $c_{i}$ and some non-negative integers $k_{i}$. We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$, or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$. We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference28 articles.

1. F -structures and integral points on semiabelian varieties over finite fields

2. 21. Nelson, K. , Two special cases of the dynamical Mordell–Lang conjecture, Master’s thesis, University of British Columbia, March 2017.

3. Mixing and linear equations over groups in positive characteristic

4. S-unit points on analytic hypersurfaces

5. Equations diophantiennes exponentielles

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intersections of orbits of self‐maps with subgroups in semiabelian varieties;Bulletin of the London Mathematical Society;2023-11-30

2. Dynamical Mordell–Lang conjecture for totally inseparable liftings of Frobenius;Mathematische Annalen;2023-08-03

3. Zariski dense orbits for regular self-maps of split semiabelian varieties in positive characteristic;Mathematical Proceedings of the Cambridge Philosophical Society;2023-05-02

4. Remarks on algebraic dynamics in positive characteristic;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-01-27

5. A conjecture strengthening the Zariski dense orbit problem for birational maps of dynamical degree one;Canadian Mathematical Bulletin;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3