Abstract
AbstractIn this paper we prove the Rigidity Theorem for motives of rigid analytic varieties over a non-Archimedean valued field $K$. We prove this theorem both for motives with transfers and without transfers in a relative setting. Applications include the construction of étale realization functors, an upgrade of the known comparison between motives with and without transfers and an upgrade of the rigid analytic motivic tilting equivalence, extending them to $\mathbb{Z}[1/p]$-coefficients.
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I;Ayoub;Astérisque,2008
2. La réalisation étale et les opérations de Grothendieck
3. Rigid Analytic Geometry and Its Applications
4. Motifs des variétés analytiques rigides;Ayoub;Mém. Soc. Math. Fr. (N.S.),2015
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献