RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS

Author:

Binda FedericoORCID,Saito Shuji

Abstract

Let $\overline{X}$ be a separated scheme of finite type over a field $k$ and $D$ a non-reduced effective Cartier divisor on it. We attach to the pair $(\overline{X},D)$ a cycle complex with modulus, those homotopy groups – called higher Chow groups with modulus – generalize additive higher Chow groups of Bloch–Esnault, Rülling, Park and Krishna–Levine, and that sheafified on $\overline{X}_{\text{Zar}}$ gives a candidate definition for a relative motivic complex of the pair, that we compute in weight $1$ . When $\overline{X}$ is smooth over $k$ and $D$ is such that $D_{\text{red}}$ is a normal crossing divisor, we construct a fundamental class in the cohomology of relative differentials for a cycle satisfying the modulus condition, refining El Zein’s explicit construction of the fundamental class of a cycle. This is used to define a natural regulator map from the relative motivic complex of $(\overline{X},D)$ to the relative de Rham complex. When $\overline{X}$ is defined over $\mathbb{C}$ , the same method leads to the construction of a regulator map to a relative version of Deligne cohomology, generalizing Bloch’s regulator from higher Chow groups. Finally, when $\overline{X}$ is moreover connected and proper over $\mathbb{C}$ , we use relative Deligne cohomology to define relative intermediate Jacobians with modulus $J_{\overline{X}|D}^{r}$ of the pair $(\overline{X},D)$ . For $r=\dim \overline{X}$ , we show that $J_{\overline{X}|D}^{r}$ is the universal regular quotient of the Chow group of $0$ -cycles with modulus.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hodge cohomology with a ramification filtration, I;Mathematische Zeitschrift;2023-11-06

2. Cycle class maps for Chow groups of zero-cycles with modulus;Journal of Pure and Applied Algebra;2023-05

3. Derived log Albanese sheaves;Advances in Mathematics;2023-03

4. Cancellation theorems for reciprocity sheaves;Algebraic Geometry;2023-03-01

5. Ramification theory of reciprocity sheaves, I: Zariski–Nagata purity;Journal für die reine und angewandte Mathematik (Crelles Journal);2023-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3