Abstract
Abstract
In this paper, we discuss the estimation of conditional quantiles of aggregate claim amounts for non-life insurance embedding the problem in a quantile regression framework using the neural network approach. As the first step, we consider the quantile regression neural networks (QRNN) procedure to compute quantiles for the insurance ratemaking framework. As the second step, we propose a new quantile regression combined actuarial neural network (Quantile-CANN) combining the traditional quantile regression approach with a QRNN. In both cases, we adopt a two-part model scheme where we fit a logistic regression to estimate the probability of positive claims and the QRNN model or the Quantile-CANN for the positive outcomes. Through a case study based on a health insurance dataset, we highlight the overall better performances of the proposed models with respect to the classical quantile regression one. We then use the estimated quantiles to calculate a loaded premium following the quantile premium principle, showing that the proposed models provide a better risk differentiation.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability
Reference33 articles.
1. Regression Quantiles
2. Selection of Value at Risk Models for Energy Commodities
3. A comparison of alternative models for the demand for medical care;Duan;Journal of Business and Economic Statistics,1983
4. Hastie, T. , Tibshirani, R. & Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition. Springer. Available online at the address http://www-stat.stanford.edu/tibs/ElemStatLearn/
5. Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献