A stochastic Expectation–Maximisation (EM) algorithm for construction of mortality tables

Author:

Esparza Luz Judith R.,Baltazar-Larios Fernando

Abstract

AbstractIn this paper, we present an extension of the model proposed by Lin & Liu that uses the concept of physiological age to model the ageing process by using phase-type distributions to calculate the probability of death. We propose a finite-state Markov jump process to model the hypothetical ageing process in which it is possible the transition rates between non-consecutive physiological ages. Since the Markov process has only a single absorbing state, the death time follows a phase-type distribution. Thus, to build a mortality table the challenge is to estimate this matrix based on the records of the ageing process. Considering the nature of the data, we consider two cases: having continuous time information of the ageing process, and the more interesting and realistic case, having reports of the process just in determined times. If the ageing process is only observed at discrete time points we have a missing data problem, thus, we use a stochastic Expectation–Maximisation (SEM) algorithm to find the maximum likelihood estimator of the intensity matrix. And in order to do that, we build Markov bridges which are sampled using the Bisection method. The theory is illustrated by a simulation study and used to fit real data.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Reference40 articles.

1. Healthy Lifestyle Characteristics and Their Joint Association With Cardiovascular Disease Biomarkers in US Adults

2. Moivre A.D. (1725). Annuties Upon Lives or The Valuation of Annuities Upon Any Number of Live; as alfo, of Reversions. W.P. and sold by Francis Fayram.

3. A benchmark for ph estimation algorithms: results for acyclic-ph

4. Markov Bridges, Bisection and Variance Reduction

5. Vitality index in survival modeling: how physiological aging influences mortality;Zuev;Journal of Gorontology,2000

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Markovian Aging Process Forecasting Model: Predicting U.S. Mortality;North American Actuarial Journal;2024-08-30

2. Statistical Inference for Partially Observed Markov-Modulated Diffusion Risk Model;Methodology and Computing in Applied Probability;2022-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3