Author:
Esparza Luz Judith R.,Baltazar-Larios Fernando
Abstract
AbstractIn this paper, we present an extension of the model proposed by Lin & Liu that uses the concept of physiological age to model the ageing process by using phase-type distributions to calculate the probability of death. We propose a finite-state Markov jump process to model the hypothetical ageing process in which it is possible the transition rates between non-consecutive physiological ages. Since the Markov process has only a single absorbing state, the death time follows a phase-type distribution. Thus, to build a mortality table the challenge is to estimate this matrix based on the records of the ageing process. Considering the nature of the data, we consider two cases: having continuous time information of the ageing process, and the more interesting and realistic case, having reports of the process just in determined times. If the ageing process is only observed at discrete time points we have a missing data problem, thus, we use a stochastic Expectation–Maximisation (SEM) algorithm to find the maximum likelihood estimator of the intensity matrix. And in order to do that, we build Markov bridges which are sampled using the Bisection method. The theory is illustrated by a simulation study and used to fit real data.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability
Reference40 articles.
1. Healthy Lifestyle Characteristics and Their Joint Association With Cardiovascular Disease Biomarkers in US Adults
2. Moivre A.D. (1725). Annuties Upon Lives or The Valuation of Annuities Upon Any Number of Live; as alfo, of Reversions. W.P. and sold by Francis Fayram.
3. A benchmark for ph estimation algorithms: results for acyclic-ph
4. Markov Bridges, Bisection and Variance Reduction
5. Vitality index in survival modeling: how physiological aging influences mortality;Zuev;Journal of Gorontology,2000
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献