A review on Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes

Author:

Jang Jiwook,Oh RosyORCID

Abstract

AbstractThe Poisson process is an essential building block to move up to complicated counting processes, such as the Cox (“doubly stochastic Poisson”) process, the Hawkes (“self-exciting”) process, exponentially decaying shot-noise Poisson (simply “shot-noise Poisson”) process and the dynamic contagion process. The Cox process provides flexibility by letting the intensity not only depending on time but also allowing it to be a stochastic process. The Hawkes process has self-exciting property and clustering effects. Shot-noise Poisson process is an extension of the Poisson process, where it is capable of displaying the frequency, magnitude and time period needed to determine the effect of points. The dynamic contagion process is a point process, where its intensity generalises the Hawkes process and Cox process with exponentially decaying shot-noise intensity. To facilitate the usage of these processes in practice, we revisit the distributional properties of the Poisson, Cox, Hawkes, shot-noise Poisson and dynamic contagion process and their compound processes. We provide simulation algorithms for these processes, which would be useful to statistical analysis, further business applications and research. As an application of the compound processes, numerical comparisons of value-at-risk and tail conditional expectation are made.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3