Nonparametric intercept regularization for insurance claim frequency regression models

Author:

Lee Gee Y.ORCID,Jeong HimchanORCID

Abstract

Abstract In a subgroup analysis for an actuarial problem, the goal is for the investigator to classify the policyholders into unique groups, where the claims experience within each group are made as homogenous as possible. In this paper, we illustrate how the alternating direction method of multipliers (ADMM) approach for subgroup analysis can be modified so that it can be more easily incorporated into an insurance claims analysis. We present an approach to penalize adjacent coefficients only and show how the algorithm can be implemented for fast estimation of the parameters. We present three different cases of the model, depending on the level of dependence among the different coverage groups within the data. In addition, we provide an interpretation of the credibility problem using both random effects and fixed effects, where the fixed effects approach corresponds to the ADMM approach to subgroup analysis, while the random effects approach represents the classic Bayesian approach. In an empirical study, we demonstrate how these approaches can be applied to real data using the Wisconsin Local Government Property Insurance Fund data. Our results show that the presented approach to subgroup analysis could provide a classification of the policyholders that improves the prediction accuracy of the claim frequencies in case other classifying variables are unavailable in the data.

Publisher

Cambridge University Press (CUP)

Reference23 articles.

1. Subgroup analysis of zero-inflated Poisson regression model with applications to insurance data;Chen;Insurance: Mathematics and Economics,2019

2. Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance

3. Predictive compound risk models with dependence;Jeong;Insurance: Mathematics and Economics,2020

4. Hierarchical credibility: analysis of a random effect linear model with nested classification

5. Sparsity and smoothness via the fused lasso

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3