Abstract
Abstract
We investigate joint modelling of longevity trends using the spatial statistical framework of Gaussian process (GP) regression. Our analysis is motivated by the Human Mortality Database (HMD) that provides unified raw mortality tables for nearly 40 countries. Yet few stochastic models exist for handling more than two populations at a time. To bridge this gap, we leverage a spatial covariance framework from machine learning that treats populations as distinct levels of a factor covariate, explicitly capturing the cross-population dependence. The proposed multi-output GP models straightforwardly scale up to a dozen populations and moreover intrinsically generate coherent joint longevity scenarios. In our numerous case studies, we investigate predictive gains from aggregating mortality experience across nations and genders, including by borrowing the most recently available “foreign” data. We show that in our approach, information fusion leads to more precise (and statistically more credible) forecasts. We implement our models in R, as well as a Bayesian version in Stan that provides further uncertainty quantification regarding the estimated mortality covariance structure. All examples utilise public HMD datasets.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,Economics and Econometrics,Statistics and Probability
Reference53 articles.
1. Flaxman, S. , Gelman, A. , Neill, D. , Smola, A. , Vehtari, A. & Wilson, A.G. (2015). Fast hierarchical Gaussian processes, technical report, Preprint at http://sethrf.com/files/fast-hierarchical-GPs.pdf.
2. Accuracy measures: theoretical and practical concerns
3. Bayesian Multitask Classification With Gaussian Process Priors
4. A Poisson common factor model for projecting mortality and life expectancy jointly for females and males
5. Multi-population mortality models: fitting, forecasting and comparisons
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献