Bacterial solubilization of mineral phosphates: Historical perspective and future prospects

Author:

Goldstein Alan H.

Abstract

AbstractMaximum crop yields require sufficient phosphorus fertilization. Only phosphate in a soluble ionic form (Pi) is effective as a mineral nutrient. Current fertilizer technology supplies the soil solution with Pi via the application of large amounts of phosphate salts. Problems with this technology include energy-intensive production processes, the need for large scale mechanical application with associated environmental consequences, and reprecipitation of the phosphate into insoluble mineral complexes. It has been estimated that in some soils up to 75% of applied phosphate fertilizer may be lost to the plant because of mineral phase reprecipitation. Many approaches, ranging from cultural practices to biological inoculants such as mycorrhizal fungi, are being employed to enhance P-use efficiency. One area that is currently under-investigated is the ability of certain types of bacteria to solubilize mineral and organic phosphates. A review of the literature in the area of bacterial phosphate solubilization confirms that this trait is displayed by a wide range of bacteria. The phosphate starvation inducible (PSI) organic phosphate-solubilizing capability of E. coli is a component of a coordinately regulated gene system: the pho regulon. It has long been known that bacteria are also capable of solubilizing mineral phosphates such as hydroxyapatite. To date there has been no systematic study of the genetics of this phenomenon. Data from my laboratory indicate that the bacterial mineral phosphate-solubilizing (MPS) trait is regulated by the external level of Pi This conclusion is supported by results obtained from several types of molecular genetic studies. It is proposed that bacteria have mineral phosphate solubilizing (mps) genes. The potential agronomic applications of bacterial mineral and organic P solubilizing systems are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Agricultural and Biological Sciences (miscellaneous)

Reference38 articles.

1. 10. Goldstein A. H. and Liu S. T. . 1986. Molecular cloning and regulation of a mineral phosphate solubilizing (MPS) gene from Erwinia herbicola. Bio/Technology. (In press).

2. Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nod− mutants

3. Overlapping and separate controls on the phosphate regulon in Escherichia coli K12

4. Does 2-Ketogluconate chelate calcium in the pH range 2.4 to 6.4? Soil Biol;Moghimi;Biochem,1980

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3