The adverse cyclic and collective pitch effect in a rotor

Author:

Kim Hak YoonORCID

Abstract

AbstractNumerical simulations have been carried out for a 32.16-ft-diameter rotor in autorotational forward flight. Coupled flapping and rotational equations were solved using the transient simulation method (TSM) to ascertain the quasistatic torque equilibrium conditions. The Pitt/Peters inflow theory was adopted in the simulations, and an airfoil look-up table made by a compressible Navier-Stokes solver was used. The adverse cyclic and collective pitch inputs were introduced in a similar fashion to helicopter control in that the cyclic lever is pulled back and the collective lever is pushed down for increasing airspeeds. The simulation results showed that the longitudinal cyclic pitch input combined with a lowered collective pitch increases the rotating torque for a low shaft angle and an advance ratio greater than one, producing both high lift and a high lift-to-drag ratio. Upon introducing the adverse cyclic and collective pitch inputs, the control range broadened, and a torque equilibrium condition was detected at 414.7kt (700ft/s) of airspeed in the simulation.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference26 articles.

1. 20. Quackenbush, T.R. and Wachspress, D.A. Measurement and analysis of high advance ratio rotor performance, 64th Annual Forum of the AHS, Montreal, Canada, 2008 April 29-May 1.

2. Performance analysis of autorotation (1): analysis method and the effect of aerodynamic table: advance ratio variation and flapping characteristics;Kim;J Soc Aeronaut Space Sci,2012

3. Computational investigation and fundamental understanding of a slowed UH-60A rotor at high advance ratios;Potsdam;J Am Helicopter Soc,2016

4. Transient Simulation Method for Autorotation in Forward Flight

5. 21. Quackenbush, T.R. and Wachspress, D.A. Aerodynamic studies of high advance ratio rotor systems, 67th Annual Forum of the AHS, Virginia Beach, VA, 2011 May 2–4.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3