Effect of aspect ratio variation on subsonic aerodynamics of cascade type grid fin at different gap-to-chord ratios

Author:

Tripathi M.ORCID,Sucheendran M.M.,Misra A.

Abstract

ABSTRACTThis paper dwells upon investigating the effect of aspect ratio (AR) variation on the aerodynamic performance of unconventional control surfaces called grid fins by virtue of a series of subsonic experiments on a simplified grid fin variant called the cascade fin. Wind tunnel tests were performed for different AR (variable span) grid fins. The same had been investigated for different gap-to-chord ratio (g/c) variants. Results demonstrated a tangible increase in the aerodynamic efficiency as well as stall angle reduction for higher AR. Moreover, higher AR leads to increased pitching moment, which emphasizes elevated hinge moment requirements. The study ensued the presence of higher deviation between the low AR fins, that is $AR<2$ compared to the pertinent deviations between the high AR fins, that is $AR\geq2$ . The effect associated with these variations was termed as span effect in this paper. It was established that, the deviations arising due to this phenomena were lesser for higher g/c and higher AR. The analysis of AR variation for different g/c presented a limiting value of AR reduction for stall performance enhancement. Thus, optimised selection of the g/c and AR values can lead to enhanced aerodynamic efficiency alongside an improved stalling characteristic.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3