Abstract
ABSTRACTExperiments were carried out with air as the test gas to obtain the surface convective heating rate and surface pressure distribution on blunt and sharp cone models flying at hypersonic speeds. Tests were performed in a hypersonic shock tunnel at two different angles of attack: ${0}^\circ$ and ${5}^\circ$ with angles of rotation $\phi = {0}^\circ, {90}^\circ$, and ${180}^\circ$. The experiments were conducted at a stagnation enthalpy of 1.4MJ/kg, flow Mach number of 6.56 and free stream Reynolds number based on the model length of $9.1 \times {10}^{5}$. The effective test time of the shock tunnel is 3ms. The results obtained for cone model with a bluntness ratio of 0.2 were compared with sharp cone models for $\alpha ={0}^\circ$. The measured stagnation heat transfer value matched well with the theoretical value predicted by the Fay and Riddell correlation and with the CFD results.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Experimental investigation of blunt cone model at hypersonic Mach number 7.25;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-03-26