Autonomous soaring using a simplified MPC approach

Author:

Pogorzelski G.ORCID,Silvestre F. J.

Abstract

ABSTRACTThe need for efficient propulsion systems allied to increasingly more challenging fixed-wing UAV mission requirements has led to recent research on the autonomous thermal soaring field with promising results. As part of that effort, the feasibility and advantages of model predictive control (MPC)-based guidance and control algorithms capable of extracting energy from natural occurring updrafts have already been demonstrated numerically. However, given the nature of the dominant atmospheric phenomena and the amplitude of the required manoeuvres, a non-linear optimal control problem results. Depending on the adopted prediction horizon length, it may be of large order, leading to implementation and real-time operation difficulties. Knowing that, an alternative MPC-based autonomous thermal soaring controller is presented herein. It is designed to yield a simple and small non-linear programming problem to be solved online. In order to accomplish that, linear prediction schemes are employed to impose the differential constraints, thus no extra variables are added to the problem and only linear bound restrictions result. For capturing the governing non-linear effects during the climb phase, a simplified representation of the aircraft kinematics with quasi-steady corrections is used by the controller internal model. Flight simulation results using a 3 degree-of-freedom model subjected to a randomly generated time varying thermal environment show that the aircraft is able to locate and exploit updrafts, suggesting that the proposed algorithm is a feasible MPC strategy to be employed in a practical application.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference18 articles.

1. Predictive Control for Soaring of Unpowered Autonomous UAVs

2. 18. Reichmann H . Cross Country Soaring, Soaring Society of America, Inc., 1993, Hobbs, NM.

3. On fast trust region methods for quadratic models with linear constraints

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3