An integrated design methodology for the deployment of constellations of small satellites

Author:

Crisp N. H.ORCID,Smith K. L.ORCID,Hollingsworth P. M.ORCID

Abstract

ABSTRACTA growing interest in constellations of small satellites has recently emerged due to the increasing capability of these platforms and their reduced time and cost of development. However, in the absence of dedicated launch services for these systems, alternative methods for the deployment of these constellations must be considered which can take advantage of the availability of secondary-payload launch opportunities. Furthermore, a means of exploring the effects and tradeoffs in corresponding system architectures is required. This paper presents a methodology to integrate the deployment of constellations of small satellites into the wider design process for these systems. Using a method of design-space exploration, enhanced understanding of the tradespace is supported , whilst identification of system designs for development is enabled by the application of an optimisation process. To demonstrate the method, a simplified analysis framework and a multiobjective genetic algorithm are implemented for three mission case-studies with differing application. The first two cases, modelled on existing constellations, indicate the benefits of design-space exploration, and possible savings which could be made in cost, system mass, or deployment time. The third case, based on a proposed Earth observation nanosatellite constellation, focuses on deployment following launch using a secondary-payload opportunity and demonstrates the breadth of feasible solutions which may not be considered if only point-designs are generated by a priori analysis. These results indicate that the presented method can support the development of future constellations of small satellites by improving the knowledge of different deployment strategies available during the early design phases and through enhanced exploration and identification of promising design alternatives.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3