Experimental analyses of synthetic jet control effects on aerodynamic characteristics of helicopter rotor

Author:

Ma Y.Y.ORCID,Zhao Q.J.,Chen X.,Zhao G.Q.

Abstract

ABSTRACTExperimental analyses of synthetic jet control (SJC) effects on aerodynamic characteristics of rotor in steady state and in hover were conducted. To ensure the structural strength of rotor and enough interior space for holding the synthetic jet actuators (SJAs), a particular blade with a frame-covering structure was designed and processed, and the experiment was conducted with low free stream velocities and rotor rotation speeds. There were three test conditions. In steady state, there were three free stream velocities (10m/s, 15m/s and 20m/s). In hover state, the rotor was worked with two rotation speeds of 180RPM and 240RPM. In forward flight, the rotor was worked with a rotation speed of 180RPM and a free stream velocity of 7.5m/s. To measure the synthetic jet control effect on rotor in stall, the range of collective pitch was set from 10° to 28° in steady state. The aerodynamic forces and sectional velocity field were measured by using the six-component balance and the Particle Image Velocimetry (PIV) system in the wind tunnel. Flow control effects on the blade based on the synthetic jets (SJ) were experimentally investigated with different jet parameters, such as jet locations, jet angles, and jet velocities. In steady state, the jet closer to the leading edge, and the jet angle of 90° had more advantages in improving the aerodynamic characteristics. Furthermore, the aerodynamic forces and sectional velocity field measurement of rotor in hover were conducted, it showed that SJAs could increase flow velocity at the upper surface, which led to lower upper surface pressure. As a result, the normal forces of rotor with two rotation speeds were increased significantly. These results indicated that the synthetic jet has a capability of increasing the normal force and delaying or preventing the stall of rotor.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3