Author:
Zhang L.,Sun M.,Cheng Q.,Chen Z.,Zhang X.
Abstract
ABSTRACTThe takeoff-mass of a two-stage-to-orbit Rocket-Based Combined Cycle Engine-Rocket (RBCC-RKT) launch vehicle is a crucial factor in its comprehensive performance. This paper optimizes the takeoff-mass together with the trajectory by reformulating it to a nonlinear optimal control problem. The range of the second stage rocket mass is considered as a process constraint. When the scopes of initial and terminal states are specified, the problem can be solved by using the Gauss pseudo-spectral method (GPM). In order to reduce the convergent difficulty caused by using table data, the data in different stages are utilized by employing an integrated interpolation strategy through the optimization. Simulation results show that the mass can be effectively optimized to meet the inertia mass ratio constraint of the first-stage, and the separation of Mach number and altitude can be optimized at the same time.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献