A new hybrid control methodology for a morphing aircraft wing-tip actuation mechanism

Author:

Kammegne M. J. Tchatchueng,Botez R. M.

Abstract

ABSTRACTThe focus of this paper is on the modelling of miniature electromechanical actuators used in a morphing wing application, on the development of a control concept for these actuators, and on the experimental validation of the designed control system integrated in the morphing wing-tip model for a real aircraft. The assembled actuator includes as its main component a brushless direct current motor coupled to a trapezoidal screw by using a gearing system. A Linear Variable Differential Transformer (LVDT) is attached on each actuator giving back the actuator position in millimetres for the control system, while an encoder placed inside the motor provides the position of the motor shaft. Two actuation lines, each with two actuators, are integrated inside the wing model to change its shape. For the experimental model, a full-scaled portion of an aircraft wing tip is used with the chord length of 1.5 meters and equipped on the upper surface with a flexible skin made of composite fibre materials. A controllable voltage provided by a power amplifier is used to drive the actuator system. In this way, three control loops are designed and implemented, one to control the torque and the other two to control the position in a parallel architecture. The parallel position control loops use feedback signals from different sources. For the first position control loop, the feedback signal is provided by the integrated encoder, while for the second one, the feedback signal comes from the LVDT. For the experimental model, the parameters for the torque control, but also for the position control-based encoder signal, are implemented in the power amplifier energising the electrical motor. On the other hand, a National Instruments real-time system is used to implement and test the position control-based LVDT signal. The experimental validation of the developed control system is realised in two independent steps: bench testing with no airflow and wind-tunnel testing. The pressure data provided by a number of Kulite sensors equipping the flexible skin upper surface and the infrared thermography camera visualisations are used to estimate the laminar-to-turbulent transition point position.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3