Abstract
Abstract
The Maastricht Formation is a mostly calcarenitic unit that belongs to the Chalk Group but is unlike the typical North Sea chalk in that it is much coarser and at times contains a significant terrigenous component. The formation was deposited between the late Maastrichtian and the early Danian in a proximal zone of the Chalk Sea immediately north of the Anglo-Brabant and Rhenish massifs. The formation crops out in South Limburg, the Netherlands, in the German state of North Rhine–Westphalia, near Aix-la-Chapelle (Aachen), and in the Belgian provinces of Liège and Limburg, and it is present in the subsurface in the Campine Basin and in the Roer Valley Graben, in Belgium and the Netherlands.
The often spectacular fossil content of the Maastricht Formation has been extensively studied but its sedimentological aspects remain understudied. Indeed, the lithostratigraphy of the formation is largely informal and based on the abundance and morphology of flint and on the quantification of fossil content. The paucity of facies studies and the lack of a lithostratigraphic framework based on modern facies studies hampers stratigraphic correlation between outcrops and, more importantly, boreholes. A facies characterisation and facies-based lithostratigraphic framework of the Maastricht Formation in South Limburg is particularly urgent because groundwater is abstracted from aquifers in the formation and geological models currently in place fail to predict facies heterogeneity and, consequently, aquifer properties.
We studied eight outcrops of the Maastricht Formation across South Limburg and carried out a (micro)facies analysis of the outcrops. We show that the Maastricht Formation can be subdivided into three lithofacies and five microfacies. The lithofacies reflect the traditional subdivision of the formation into Maastricht and Kunrade limestones. Our results suggest that the current subdivision of the Maastricht Formation into six members is untenable. The formation is best subdivided into lower and upper members. The Kunrade limestone should be afforded the status of formation.
We interpret the Maastricht Formation as having been deposited in an epeiric ramp, in which facies distribution was controlled by water temperature, nutrient levels and storminess. The (micro)facies of the Maastricht Formation can be organised into two depositional stages: stage 1, representing the lower part of the formation, is characterised by heterozoan carbonates deposited under cooler, mesotrophic conditions in a nutrient-rich, more proximal region of the epeiric sea; stage 2 is characterised by heterozoan-photozoan carbonates deposited in a warmer and stormier environment with slightly lower nutrient levels.
Publisher
Cambridge University Press (CUP)
Reference91 articles.
1. Cretaceous flooding of the Brabant Massif and the lithostratigraphic characteristics of its chalk cover in Northern Belgium;Dusar;Geologica Belgica,2007
2. Evolving ideas about the Cretaceous climate and ocean circulation;Hay;Cretaceous Research,2008
3. Zur Verbreitung und Fazies des Maastricht in Nordwestdeutschland;Fahrion;Zeitschrift der deutschen geologischen Gesellschaft,1984
4. RIR - measurement and use in quantitative XRD;Hubbard;Powder Diffraction,1988
5. Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico;Halfar;Geology,2004