On the Maximum Number of Spanning Copies of an Orientation in a Tournament

Author:

YUSTER RAPHAEL

Abstract

For an orientation H with n vertices, let T(H) denote the maximum possible number of labelled copies of H in an n-vertex tournament. It is easily seen that T(H) ≥ n!/2e(H), as the latter is the expected number of such copies in a random tournament. For n odd, let R(H) denote the maximum possible number of labelled copies of H in an n-vertex regular tournament. In fact, Adler, Alon and Ross proved that for H=Cn, the directed Hamilton cycle, T(Cn) ≥ (e−o(1))n!/2n, and it was observed by Alon that already R(Cn) ≥ (e−o(1))n!/2n. Similar results hold for the directed Hamilton path Pn. In other words, for the Hamilton path and cycle, the lower bound derived from the expectation argument can be improved by a constant factor. In this paper we significantly extend these results, and prove that they hold for a larger family of orientations H which includes all bounded-degree Eulerian orientations and all bounded-degree balanced orientations, as well as many others. One corollary of our method is that for any fixed k, every k-regular orientation H with n vertices satisfies T(H) ≥ (eko(1))n!/2e(H), and in fact, for n odd, R(H) ≥ (eko(1))n!/2e(H).

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference18 articles.

1. Keevash P. (2014) The existence of designs. arXiv:1401.3665

2. Counting and packing Hamilton cycles in dense graphs and oriented graphs

3. Kombinatorikai vizsgálatok az irányitott teljes gráffal kapcsolatban;Szele;Mat. Fiz. Lapok,1943

4. On the maximal number of independent circuits in a graph

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hamiltonian cycles above expectation in r-graphs and quasi-random r-graphs;Journal of Combinatorial Theory, Series B;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3