Incidences in Three Dimensions and Distinct Distances in the Plane

Author:

ELEKES GYÖRGY,SHARIR MICHA

Abstract

We first describe a reduction from the problem of lower-bounding the number of distinct distances determined by a set S of s points in the plane to an incidence problem between points and a certain class of helices (or parabolas) in three dimensions. We offer conjectures involving the new set-up, but are still unable to fully resolve them.Instead, we adapt the recent new algebraic analysis technique of Guth and Katz [9], as further developed by Elekes, Kaplan and Sharir [6], to obtain sharp bounds on the number of incidences between these helices or parabolas and points in ℝ3. Applying these bounds, we obtain, among several other results, the upper bound O(s3) on the number of rotations (rigid motions) which map (at least) three points of S to three other points of S. In fact, we show that the number of such rotations which map at least k ≥ 3 points of S to k other points of S is close to O(s3/k12/7).One of our unresolved conjectures is that this number is O(s3/k2), for k ≥ 2. If true, it would imply the lower bound Ω(s/logs) on the number of distinct distances in the plane.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Triangles with one fixed side–length, a Furstenberg-type problem, and incidences in finite vector spaces;Forum Mathematicum;2024-03-26

2. A note on the distinct distances problem in the hyperbolic plane;Pacific Journal of Mathematics;2023-12-31

3. A Structural Theorem for Sets with Few Triangles;Combinatorica;2023-10-12

4. Dense Graphs Have Rigid Parts;Discrete & Computational Geometry;2023-03-01

5. On the pinned distances problem in positive characteristic;Journal of the London Mathematical Society;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3