Ramsey properties of randomly perturbed graphs: cliques and cycles

Author:

Das Shagnik,Treglown Andrew

Abstract

AbstractGiven graphs H1, H2, a graph G is (H1, H2) -Ramsey if, for every colouring of the edges of G with red and blue, there is a red copy of H1 or a blue copy of H2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs. This is a random graph model introduced by Bohman, Frieze and Martin [8] in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3, Kt) -Ramsey (for t ≽ 3). They also raised the question of generalizing this result to pairs of graphs other than (K3, Kt). We make significant progress on this question, giving a precise solution in the case when H1 = Ks and H2 = Kt where s, t ≽ 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3, Kt) -Ramsey question. Moreover, we give bounds for the corresponding (K4, Kt) -Ramsey question; together with a construction of Powierski [37] this resolves the (K4, K4) -Ramsey problem.We also give a precise solution to the analogous question in the case when both H1 = Cs and H2 = Ct are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalization of the Krivelevich, Sudakov and Tetali [30] result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs, Kt) -Ramsey (for odd s ≽ 5 and t ≽ 4).To prove our results we combine a mixture of approaches, employing the container method, the regularity method as well as dependent random choice, and apply robust extensions of recent asymmetric random Ramsey results.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schur properties of randomly perturbed sets;European Journal of Combinatorics;2023-10

2. Rainbow connectivity of randomly perturbed graphs;Journal of Graph Theory;2023-08-09

3. An asymmetric random Rado theorem: 1-statement;Journal of Combinatorial Theory, Series A;2023-01

4. Large Rainbow Cliques in Randomly Perturbed Dense Graphs;SIAM Journal on Discrete Mathematics;2022-12

5. A novel CRITIC‐TOPSIS approach for optimal selection of software reliability growth model (SRGM);Quality and Reliability Engineering International;2022-03-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3