Author:
Alon Noga,Hefetz Dan,Krivelevich Michael,Tyomkyn Mykhaylo
Abstract
AbstractThe inducibility of a graph H measures the maximum number of induced copies of H a large graph G can have. Generalizing this notion, we study how many induced subgraphs of fixed order k and size ℓ a large graph G on n vertices can have. Clearly, this number is $\left( {\matrix{n \cr k}}\right)$ for every n, k and $\ell \in \left\{ {0,\left( {\matrix{k \cr 2}} \right)}\right\}$. We conjecture that for every n, k and $0 \lt \ell \lt \left( {\matrix{k \cr 2}}\right)$ this number is at most $ (1/e + {o_k}(1)) {\left( {\matrix{n \cr k}} \right)}$. If true, this would be tight for ℓ ∈ {1, k − 1}.In support of our ‘Edge-statistics Conjecture’, we prove that the corresponding density is bounded away from 1 by an absolute constant. Furthermore, for various ranges of the values of ℓ we establish stronger bounds. In particular, we prove that for ‘almost all’ pairs (k, ℓ) only a polynomially small fraction of the k-subsets of V(G) have exactly ℓ edges, and prove an upper bound of $ (1/2 + {o_k}(1)){\left( {\matrix{n \cr k}}\right)}$ for ℓ = 1.Our proof methods involve probabilistic tools, such as anti-concentration results relying on fourth moment estimates and Brun’s sieve, as well as graph-theoretic and combinatorial arguments such as Zykov’s symmetrization, Sperner’s theorem and various counting techniques.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Reference18 articles.
1. Modern Graph Theory
2. The Dual BKR Inequality and Rudich's Conjecture
3. Random Graphs
4. [9] Fox, J. and Sauermann, L. (2018) A completion of the proof of the Edge-statistics Conjecture. arXiv:1809.01352
5. [11] Král, D. , Norin, S. and Volec, J. (2018) A bound on the inducibility of cycles. arXiv:1801.01556
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献