On the peel number and the leaf-height of Galton–Watson trees

Author:

Devroye Luc,Goh Marcel K.,Zhao Rosie Y.

Abstract

AbstractWe study several parameters of a random Bienaymé–Galton–Watson tree $T_n$ of size $n$ defined in terms of an offspring distribution $\xi$ with mean $1$ and nonzero finite variance $\sigma ^2$ . Let $f(s)=\mathbb{E}\{s^\xi \}$ be the generating function of the random variable $\xi$ . We show that the independence number is in probability asymptotic to $qn$ , where $q$ is the unique solution to $q = f(1-q)$ . One of the many algorithms for finding the largest independent set of nodes uses a notion of repeated peeling away of all leaves and their parents. The number of rounds of peeling is shown to be in probability asymptotic to $\log n/\log (1/f'(1-q))$ . Finally, we study a related parameter which we call the leaf-height. Also sometimes called the protection number, this is the maximal shortest path length between any node and a leaf in its subtree. If $p_1 = \mathbb{P}\{\xi =1\}\gt 0$ , then we show that the maximum leaf-height over all nodes in $T_n$ is in probability asymptotic to $\log n/\log (1/p_1)$ . If $p_1 = 0$ and $\kappa$ is the first integer $i\gt 1$ with $\mathbb{P}\{\xi =i\}\gt 0$ , then the leaf-height is in probability asymptotic to $\log _\kappa \log n$ .

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The distribution of the maximum protection number in simply generated trees;Combinatorics, Probability and Computing;2024-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3