Playing to Retain the Advantage

Author:

ALON NOGA,HEFETZ DAN,KRIVELEVICH MICHAEL

Abstract

Let P be a monotone increasing graph property, let G = (V, E) be a graph, and let q be a positive integer. In this paper, we study the (1: q) Maker–Breaker game, played on the edges of G, in which Maker's goal is to build a graph that satisfies the property P. It is clear that in order for Maker to have a chance of winning, G itself must satisfy P. We prove that if G satisfies P in some strong sense, that is, if one has to delete sufficiently many edges from G in order to obtain a graph that does not satisfy P, then Maker has a winning strategy for this game. We also consider a different notion of satisfying some property in a strong sense, which is motivated by a problem of Duffus, Łuczak and Rödl [6].

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Maker-Breaker Largest Connected Subgraph game;Theoretical Computer Science;2023-01

2. Maker-Breaker Games on Randomly Perturbed Graphs;SIAM Journal on Discrete Mathematics;2021-01

3. On weight function methods in Chooser–Picker games;Theoretical Computer Science;2013-03

4. Global Maker–Breaker games on sparse graphs;European Journal of Combinatorics;2011-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3