Abstract
In this paper we study the use of spectral techniques for graph partitioning. Let G = (V, E) be a graph whose vertex set has a ‘latent’ partition V1,. . ., Vk. Moreover, consider a ‘density matrix’ Ɛ = (Ɛvw)v, sw∈V such that, for v ∈ Vi and w ∈ Vj, the entry Ɛvw is the fraction of all possible Vi−Vj-edges that are actually present in G. We show that on input (G, k) the partition V1,. . ., Vk can (very nearly) be recovered in polynomial time via spectral methods, provided that the following holds: Ɛ approximates the adjacency matrix of G in the operator norm, for vertices v ∈ Vi, w ∈ Vj ≠ Vi the corresponding column vectors Ɛv, Ɛw are separated, and G is sufficiently ‘regular’ with respect to the matrix Ɛ. This result in particular applies to sparse graphs with bounded average degree as n = #V → ∞, and it has various consequences on partitioning random graphs.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献