Author:
GEORGAKOPOULOS AGELOS,WINKLER PETER
Abstract
We show that the expected time for a random walk on a (multi-)graphGto traverse allmedges ofG, and return to its starting point, is at most 2m2; if each edge must be traversed in both directions, the bound is 3m2. Both bounds are tight and may be applied to graphs with arbitrary edge lengths. This has interesting implications for Brownian motion on certain metric spaces, including some fractals.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献