On oriented cycles in randomly perturbed digraphs

Author:

Araujo Igor,Balogh József,Krueger Robert A.,Piga SimónORCID,Treglown Andrew

Abstract

AbstractIn 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed graphs and digraphs. For digraphs, they showed that for every $\alpha \gt 0$ , there exists a constant $C$ such that for every $n$ -vertex digraph of minimum semi-degree at least $\alpha n$ , if one adds $Cn$ random edges then asymptotically almost surely the resulting digraph contains a consistently oriented Hamilton cycle. We generalize their result, showing that the hypothesis of this theorem actually asymptotically almost surely ensures the existence of every orientation of a cycle of every possible length, simultaneously. Moreover, we prove that we can relax the minimum semi-degree condition to a minimum total degree condition when considering orientations of a cycle that do not contain a large number of vertices of indegree $1$ . Our proofs make use of a variant of an absorbing method of Montgomery.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference28 articles.

1. Optimal threshold for a random graph to be 2-universal

2. Universality for bounded degree spanning trees in randomly perturbed graphs

3. Random Perturbation of Sparse Graphs

4. Pancyclic graphs I

5. Une condition suffisante d’existence d’un circuit hamiltonien;Ghouila-Houri;C. R. Acad. Sci. Paris,1960

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rainbow Hamiltonicity in uniformly coloured perturbed digraphs;Combinatorics, Probability and Computing;2024-05-13

2. Cycles of every length and orientation in randomly perturbed digraphs;Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3