Author:
DUMITRESCU ADRIAN,TÓTH CSABA D.
Abstract
We formulate and give partial answers to several combinatorial problems on volumes of simplices determined bynpoints in 3-space, and in general inddimensions.(i)The number of tetrahedra of minimum (non-zero) volume spanned bynpoints in$\mathbb{R}$3is at most$\frac{2}{3}n^3-O(n^2)$, and there are point sets for which this number is$\frac{3}{16}n^3-O(n^2)$. We also present anO(n3) time algorithm for reporting all tetrahedra of minimum non-zero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke and Seidel. In general, for every$k,d\in \mathbb{N}, 1\leq k \leq d$, the maximum number ofk-dimensional simplices of minimum (non-zero) volume spanned bynpoints in$\mathbb{R}$dis Θ(nk).(ii)The number of unit volume tetrahedra determined bynpoints in$\mathbb{R}$3isO(n7/2), and there are point sets for which this number is Ω(n3log logn).(iii)For every$d\in \mathbb{N}$, the minimum number of distinct volumes of all full-dimensional simplices determined bynpoints in$\mathbb{R}$d, not all on a hyperplane, is Θ(n).
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Reference36 articles.
1. [24] Erdős P. and Purdy G. (1976) Some extremal problems in geometry IV. Congressus Numerantium 17 (Proc. 7th South-Eastern Conf. on Combinatorics, Graph Theory, and Computing) 307–322.
2. Algorithms in Combinatorial Geometry
3. Distinct Distances in Three and Higher Dimensions
4. Repeated angles in the plane and related problems
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献