A special case of Vu’s conjecture: colouring nearly disjoint graphs of bounded maximum degree

Author:

Kelly TomORCID,Kühn Daniela,Osthus Deryk

Abstract

Abstract A collection of graphs is nearly disjoint if every pair of them intersects in at most one vertex. We prove that if $G_1, \dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$ , then the following holds. For every fixed $C$ , if each vertex $v \in \bigcup _{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \dots, G_m$ , then the (list) chromatic number of $\bigcup _{i=1}^m G_i$ is at most $D + o(D)$ . This result confirms a special case of a conjecture of Vu and generalizes Kahn’s bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy and Postle, and we derive this result from a more general list colouring result in the setting of ‘colour degrees’ that also implies a result of Reed and Sudakov.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference27 articles.

1. Graph and hypergraph colouring via nibble methods: A survey

2. Asymptotically Good List-Colorings

3. [15] Kang, D. Y. , Kelly, T. , Kühn, D. , Methuku, A. and Osthus, D. (2021) Solution to a problem of Erdős on the chromatic index of hypergraphs with bounded codegree, arXiv: 2110.06181.

4. Independent transversals in bipartite correspondence-covers

5. Coloring nearly-disjoint hypergraphs with n + o(n) colors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3