The Size of the Largest Part of Random Weighted Partitions of Large Integers

Author:

MUTAFCHIEV LJUBEN

Abstract

We consider partitions of the positive integernwhose parts satisfy the following condition. For a given sequence of non-negative numbers {bk}k≥1, a part of sizekappears in exactlybkpossible types. Assuming that a weighted partition is selected uniformly at random from the set of all such partitions, we study the asymptotic behaviour of the largest partXn. LetD(s)=∑k=1bkk−s,s=σ+iy, be the Dirichlet generating series of the weightsbk. Under certain fairly general assumptions, Meinardus (1954) obtained the asymptotic of the total number of such partitions asn→∞. Using the Meinardus scheme of conditions, we prove thatXn, appropriately normalized, converges weakly to a random variable having Gumbel distribution (i.e., its distribution function equalse−e−t, −∞<t<∞). This limit theorem extends some known results on particular types of partitions and on the Bose–Einstein model of ideal gas.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic enumeration and limit laws for multisets: The subexponential case;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-02-01

2. The Limiting Distribution of the Hook Length of a Randomly Chosen Cell in a Random Young Diagram;Proceedings of the Steklov Institute of Mathematics;2022-03

3. Предельное распределение длины крюка случайно выбранной ячейки в случайной диаграмме Юнга;Trudy Matematicheskogo Instituta imeni V.A. Steklova;2022-03

4. Asymptotic analysis of expectations of plane partition statistics;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2018-02-06

5. An Asymptotic Scheme for Analysis of Expectations of Plane Partition Statistics;Electronic Notes in Discrete Mathematics;2017-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3