Covering and tiling hypergraphs with tight cycles

Author:

Han Jie,Lo Allan,Sanhueza-Matamala Nicolás

Abstract

AbstractA k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$. The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest.For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$, there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$, every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$-tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference29 articles.

1. [2] Allen, P. , Böttcher, J. , Cooley, O. and Mycroft, R. (2017) Tight cycles and regular slices in dense hypergraphs. J. Combin. Theory Ser. A 149 30–100.

2. [21] Kühn, D. , Mycroft, R. and Osthus, D. (2010) Hamilton ℓ-cycles in uniform hypergraphs. J. Combin. Theory Ser. A 117 910–927.

3. Proof of the Erdős–Faudree Conjecture on Quadrilaterals

4. $$F$$ F -Factors in Hypergraphs Via Absorption

5. [14] Han, J. , Zang, C. and Zhao, Y. (2017) Minimum vertex degree thresholds for tiling complete 3-partite 3-graphs. J. Combin. Theory Ser. A 149 115–147.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cycle decompositions in k-uniform hypergraphs;Journal of Combinatorial Theory, Series B;2024-07

2. Towards Lehel's Conjecture for 4-Uniform Tight Cycles;The Electronic Journal of Combinatorics;2023-01-13

3. Covering 3‐uniform hypergraphs by vertex‐disjoint tight paths;Journal of Graph Theory;2022-06-20

4. Hamiltonicity in Cherry-quasirandom 3-graphs;European Journal of Combinatorics;2022-05

5. Minimum degree conditions for tight Hamilton cycles;Journal of the London Mathematical Society;2022-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3