Combinatorial Structures on van der Waerden sets

Author:

TYROS KONSTANTINOS

Abstract

In this paper we provide two results. The first one consists of an infinitary version of the Furstenberg–Weiss theorem. More precisely we show that every subsetAof a homogeneous treeTsuch that$\frac{|A\cap T(n)|}{|T(n)|}\geqslant\delta,$whereT(n) denotes thenth level ofT, for allnin a van der Waerden set, for some positive real δ, contains a strong subtree having a level set which forms a van der Waerden set.The second result is the following. For every sequence (mq)q∈ℕof positive integers and for every real 0 < δ ⩽ 1, there exists a sequence (nq)q∈ℕof positive integers such that for everyD⊆ ∪kq=0k-1[nq] satisfying$\frac{\big|D\cap \prod_{q=0}^{k-1} [n_q]\big|s}{\prod_{q=0}^{k-1}n_q}\geqslant\delta$for everykin a van der Waerden set, there is a sequence (Jq)q∈ℕ, whereJqis an arithmetic progression of lengthmqcontained in [nq] for allq, such that ∏q=0k-1JqDfor everykin a van der Waerden set. Moreover, working in an abstract setting, we may requireJqto be any configuration of natural numbers that can be found in an arbitrary set of positive density.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3