On the maximum number of edges in -critical graphs

Author:

Luo Cong,Ma Jie,Yang Tianchi

Abstract

AbstractA graph is called $k$ -critical if its chromatic number is $k$ but every proper subgraph has chromatic number less than $k$ . An old and important problem in graph theory asks to determine the maximum number of edges in an $n$ -vertex $k$ -critical graph. This is widely open for every integer $k\geq 4$ . Using a structural characterisation of Greenwell and Lovász and an extremal result of Simonovits, Stiebitz proved in 1987 that for $k\geq 4$ and sufficiently large $n$ , this maximum number is less than the number of edges in the $n$ -vertex balanced complete $(k-2)$ -partite graph. In this paper, we obtain the first improvement in the above result in the past 35 years. Our proofs combine arguments from extremal graph theory as well as some structural analysis. A key lemma we use indicates a partial structure in dense $k$ -critical graphs, which may be of independent interest.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3