Abstract
Stein's method of exchangeable pairs is examined through five examples in relation to Poisson and normal distribution approximation. In particular, in the case where the exchangeable pair is constructed from a reversible Markov chain, we analyse how modifying the step size of the chain in a natural way affects the error term in the approximation acquired through Stein's method. It has been noted for the normal approximation that smaller step sizes may yield better bounds, and we obtain the first rigorous results that verify this intuition. For the examples associated to the normal distribution, the bound on the error is expressed in terms of the spectrum of the underlying chain, a characteristic of the chain related to convergence rates. The Poisson approximation using exchangeable pairs is less studied than the normal, but in the examples presented here the same principles hold.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Functional Gaussian approximations on Hilbert-Poisson spaces;Latin American Journal of Probability and Mathematical Statistics;2024