Author:
DIACONIS PERSI,MICLO LAURENT
Abstract
Consider the barycentric subdivision which cuts a given triangle along its medians to produce six new triangles. Uniformly choosing one of them and iterating this procedure gives rise to a Markov chain. We show that, almost surely, the triangles forming this chain become flatter and flatter in the sense that their isoperimetric values go to infinity with time. Nevertheless, if the triangles are renormalized through a similitude to have their longest edge equal to [0, 1] ⊂ ℂ (with 0 also adjacent to the shortest edge), their aspect does not converge and we identify the limit set of the opposite vertex with the segment [0, 1/2]. In addition we prove that the largest angle converges to π in probability. Our approach is probabilistic, and these results are deduced from the investigation of a limit iterated random function Markov chain living on the segment [0, 1/2]. The stationary distribution of this limit chain is particularly important in our study.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献