Abstract
Abstract
Distinguishing between continuous and first-order phase transitions is a major challenge in random discrete systems. We study the topic for events with recursive structure on Galton–Watson trees. For example, let
$\mathcal{T}_1$
be the event that a Galton–Watson tree is infinite and let
$\mathcal{T}_2$
be the event that it contains an infinite binary tree starting from its root. These events satisfy similar recursive properties:
$\mathcal{T}_1$
holds if and only if
$\mathcal{T}_1$
holds for at least one of the trees initiated by children of the root, and
$\mathcal{T}_2$
holds if and only if
$\mathcal{T}_2$
holds for at least two of these trees. The probability of
$\mathcal{T}_1$
has a continuous phase transition, increasing from 0 when the mean of the child distribution increases above 1. On the other hand, the probability of
$\mathcal{T}_2$
has a first-order phase transition, jumping discontinuously to a non-zero value at criticality. Given the recursive property satisfied by the event, we describe the critical child distributions where a continuous phase transition takes place. In many cases, we also characterise the event undergoing the phase transition.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science