Author:
HATAMI HAMED,HLADKÝ JAN,KRÁL' DANIEL,NORINE SERGUEI,RAZBOROV ALEXANDER
Abstract
A graph H is called common if the sum of the number of copies of H in a graph G and the number in the complement of G is asymptotically minimized by taking G to be a random graph. Extending a conjecture of Erdős, Burr and Rosta conjectured that every graph is common. Thomason disproved both conjectures by showing that K4 is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, Št'ovíček and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colourable.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献