Author:
KAMČEV NINA,ŁUCZAK TOMASZ,SUDAKOV BENNY
Abstract
A sequenceSis calledanagram-freeif it contains no consecutive symbolsr1r2. . .rkrk+1. . .r2ksuch thatrk+1. . .r2kis a permutation of the blockr1r2. . .rk. Answering a question of Erdős and Brown, Keränen constructed an infinite anagram-free sequence on four symbols. Motivated by the work of Alon, Grytczuk, Hałuszczak and Riordan [2], we consider a natural generalization of anagram-free sequences for graph colourings. A colouring of the vertices of a given graphGis calledanagram-freeif the sequence of colours on any path inGis anagram-free. We call the minimal number of colours needed for such a colouring theanagram-chromaticnumber ofG.In this paper we study the anagram-chromatic number of several classes of graphs like trees, minor-free graphs and bounded-degree graphs. Surprisingly, we show that there are bounded-degree graphs (such as random regular graphs) in which anagrams cannot be avoided unless we essentially give each vertex a separate colour.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. $2\times n$ Grids have Unbounded Anagram-Free Chromatic Number;The Electronic Journal of Combinatorics;2022-08-26
2. Avoiding abelian powers cyclically;Advances in Applied Mathematics;2020-10
3. The Zero Forcing Number of Graphs;SIAM Journal on Discrete Mathematics;2019-01
4. Anagram-Free Colorings of Graph Subdivisions;SIAM Journal on Discrete Mathematics;2018-01