On Turán exponents of bipartite graphs

Author:

Jiang Tao,Ma Jie,Yepremyan Liana

Abstract

Abstract A long-standing conjecture of Erdős and Simonovits asserts that for every rational number $r\in (1,2)$ there exists a bipartite graph H such that $\mathrm{ex}(n,H)=\Theta(n^r)$ . So far this conjecture is known to be true only for rationals of form $1+1/k$ and $2-1/k$ , for integers $k\geq 2$ . In this paper, we add a new form of rationals for which the conjecture is true: $2-2/(2k+1)$ , for $k\geq 2$ . This in turn also gives an affirmative answer to a question of Pinchasi and Sharir on cube-like graphs. Recently, a version of Erdős and Simonovits $^{\prime}$ s conjecture, where one replaces a single graph by a finite family, was confirmed by Bukh and Conlon. They proposed a construction of bipartite graphs which should satisfy Erdős and Simonovits $^{\prime}$ s conjecture. Our result can also be viewed as a first step towards verifying Bukh and Conlon $^{\prime}$ s conjecture. We also prove an upper bound on the Turán number of theta graphs in an asymmetric setting and employ this result to obtain another new rational exponent for Turán exponents: $r=7/5$ .

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extremal graphs for the odd prism;Discrete Mathematics;2025-01

2. Turán Number of Nonbipartite Graphs and the Product Conjecture;Communications in Mathematics and Statistics;2023-10-25

3. Bipartite-ness under smooth conditions;Combinatorics, Probability and Computing;2023-02-03

4. Many Turán exponents via subdivisions;Combinatorics, Probability and Computing;2022-07-21

5. Disproof of a Conjecture of Erdős and Simonovits on the Turán Number of Graphs with Minimum Degree 3;International Mathematics Research Notices;2022-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3