Concave Majorants of Random Walks and Related Poisson Processes

Author:

ABRAMSON JOSH,PITMAN JIM

Abstract

We offer a unified approach to the theory of concave majorants of random walks, by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant. This leads to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant of a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean, we investigate three nested compositions that naturally arise from our construction of the concave majorant.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Convex minorants and the fluctuation theory of Lévy processes;Latin American Journal of Probability and Mathematical Statistics;2022

2. Conic intrinsic volumes of Weyl chambers;Modern Stochastics: Theory and Applications;2022

3. How long is the convex minorant of a one-dimensional random walk?;Electronic Journal of Probability;2020-01-01

4. $\varepsilon $-strong simulation of the convex minorants of stable processes and meanders;Electronic Journal of Probability;2020-01-01

5. Zeros of random tropical polynomials, random polygons and stick-breaking;Transactions of the American Mathematical Society;2016-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3