Author:
SHARIR MICHA,SHEFFER ADAM,ZAHL JOSHUA
Abstract
We establish an improved upper bound for the number of incidences betweenmpoints andncircles in three dimensions. The previous best known bound, originally established for the planar case and later extended to any dimension ≥ 2, isO*(m2/3n2/3+m6/11n9/11+m+n), where theO*(⋅) notation hides polylogarithmic factors. Since all the points and circles may lie on a common plane (or sphere), it is impossible to improve the bound in ℝ3without first improving it in the plane.Nevertheless, we show that if the set of circles is required to be ‘truly three-dimensional’ in the sense that no sphere or plane contains more thanqof the circles, for someq≪n, then for any ϵ > 0 the bound can be improved to\[ O\bigl(m^{3/7+\eps}n^{6/7} + m^{2/3+\eps}n^{1/2}q^{1/6} + m^{6/11+\eps}n^{15/22}q^{3/22} + m + n\bigr). \]For various ranges of parameters (e.g., whenm= Θ(n) andq=o(n7/9)), this bound is smaller than the lower bound Ω*(m2/3n2/3+m+n), which holds in two dimensions.We present several extensions and applications of the new bound.(i)For the special case where all the circles have the same radius, we obtain the improved boundO(m5/11+ϵn9/11+m2/3+ϵn1/2q1/6+m+n).(ii)We present an improved analysis that removes the subpolynomial factors from the bound whenm=O(n3/2−ϵ) for any fixed ϵ < 0.(iii)We use our results to obtain the improved boundO(m15/7) for the number of mutually similar triangles determined by any set ofmpoints in ℝ3.Our result is obtained by applying the polynomial partitioning technique of Guth and Katz using a constant-degree partitioning polynomial (as was also recently used by Solymosi and Tao). We also rely on various additional tools from analytic, algebraic, and combinatorial geometry.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Reference51 articles.
1. Ideals, Varieties, and Algorithms
2. Lines in space: Combinatorics and algorithms
3. Mathematical Omnibus
4. Guth L. Distinct distance estimates and low degree polynomial partitioning. arXiv:1404.2321.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Distinct Distances on Non-Ruled Surfaces and Between Circles;Discrete & Computational Geometry;2022-11-14
2. Incidences between points and curves with almost two degrees of freedom;Journal of Combinatorial Theory, Series A;2022-05
3. Counting and Cutting Rich Lenses in Arrangements of Circles;SIAM Journal on Discrete Mathematics;2022-04-11
4. Algebraic Techniques in Geometry;Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation;2018-07-11
5. A Crossing Lemma for Jordan curves;Advances in Mathematics;2018-06