Improved Bounds for Incidences Between Points and Circles

Author:

SHARIR MICHA,SHEFFER ADAM,ZAHL JOSHUA

Abstract

We establish an improved upper bound for the number of incidences betweenmpoints andncircles in three dimensions. The previous best known bound, originally established for the planar case and later extended to any dimension ≥ 2, isO*(m2/3n2/3+m6/11n9/11+m+n), where theO*(⋅) notation hides polylogarithmic factors. Since all the points and circles may lie on a common plane (or sphere), it is impossible to improve the bound in ℝ3without first improving it in the plane.Nevertheless, we show that if the set of circles is required to be ‘truly three-dimensional’ in the sense that no sphere or plane contains more thanqof the circles, for someqn, then for any ϵ > 0 the bound can be improved to\[ O\bigl(m^{3/7+\eps}n^{6/7} + m^{2/3+\eps}n^{1/2}q^{1/6} + m^{6/11+\eps}n^{15/22}q^{3/22} + m + n\bigr). \]For various ranges of parameters (e.g., whenm= Θ(n) andq=o(n7/9)), this bound is smaller than the lower bound Ω*(m2/3n2/3+m+n), which holds in two dimensions.We present several extensions and applications of the new bound.(i)For the special case where all the circles have the same radius, we obtain the improved boundO(m5/11+ϵn9/11+m2/3+ϵn1/2q1/6+m+n).(ii)We present an improved analysis that removes the subpolynomial factors from the bound whenm=O(n3/2−ϵ) for any fixed ϵ < 0.(iii)We use our results to obtain the improved boundO(m15/7) for the number of mutually similar triangles determined by any set ofmpoints in ℝ3.Our result is obtained by applying the polynomial partitioning technique of Guth and Katz using a constant-degree partitioning polynomial (as was also recently used by Solymosi and Tao). We also rely on various additional tools from analytic, algebraic, and combinatorial geometry.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science

Reference51 articles.

1. Ideals, Varieties, and Algorithms

2. Lines in space: Combinatorics and algorithms

3. Mathematical Omnibus

4. Guth L. Distinct distance estimates and low degree polynomial partitioning. arXiv:1404.2321.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distinct Distances on Non-Ruled Surfaces and Between Circles;Discrete & Computational Geometry;2022-11-14

2. Incidences between points and curves with almost two degrees of freedom;Journal of Combinatorial Theory, Series A;2022-05

3. Counting and Cutting Rich Lenses in Arrangements of Circles;SIAM Journal on Discrete Mathematics;2022-04-11

4. Algebraic Techniques in Geometry;Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation;2018-07-11

5. A Crossing Lemma for Jordan curves;Advances in Mathematics;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3