Abstract
AbstractIn this note, we give a precise description of the limiting empirical spectral distribution for the non-backtracking matrices for an Erdős-Rényi graph
$G(n,p)$
assuming
$np/\log n$
tends to infinity. We show that derandomizing part of the non-backtracking random matrix simplifies the spectrum considerably, and then, we use Tao and Vu’s replacement principle and the Bauer-Fike theorem to show that the partly derandomized spectrum is, in fact, very close to the original spectrum.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献