Author:
DENNERT FLORIAN,GRÜBEL RUDOLF
Abstract
For random trees T generated by the binary search tree algorithm from uniformly distributed input we consider the subtree size profile, which maps k ∈ ℕ to the number of nodes in T that root a subtree of size k. Complementing earlier work by Devroye, by Feng, Mahmoud and Panholzer, and by Fuchs, we obtain results for the range of small k-values and the range of k-values proportional to the size n of T. In both cases emphasis is on the process view, i.e., the joint distributions for several k-values. We also show that the dynamics of the tree sequence lead to a qualitative difference between the asymptotic behaviour of the lower and the upper end of the profile.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Computational Theory and Mathematics,Statistics and Probability,Theoretical Computer Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献